Motion Control Tuning

Contents

- Mechatronics Training Curriculum
- Details of Course Motion Control Tuning

Mechatronics Training Curriculum

<u>Relevant partner trainings:</u> Applied Optics, Electronics for nonelectrical engineers, System Architecture, Soft skills for technology professionals,

. . .

www.mechatronics-academy.nl

Mechatronics Academy

- In the past, many trainings were developed within Philips to train own staff, but the training center CTT stopped.
- Mechatronics Academy B.V. has been setup to provide continuity of the existing trainings and develop new trainings in the field of precision mechatronics. It is founded and run by:
 - Prof. Maarten Steinbuch
 - Prof. Jan van Eijk
 - Dr. Adrian Rankers
- We cooperate in the **High Tech Institute** consortium that provides sales, marketing and back office functions.

Motion Control Tuning

Course Directors / Trainers

Course Director(s)

- Dr.ir. Tom Oomen (TU/e)
- Dr.ir. Gert Witvoet (TNO & TU/e)
- Dr.ir. Adrian Rankers (Mechatronics Academy)

Teachers

- TU/Eindhoven:
 - Prof.dr.ir. M. Steinbuch, Dr. ir. T. Oomen, Dr. ir. P. Nuij,
 - Dr.ir. J.J. Bolder, Ir. T. Gommans, Ir. R. van der Maas
- Other:
 - Dr.ir. E.P. van der Laan (Philips Innovation Services)
 - Dr.ir. M.J.M. van de Wal (ASML)
 - Dr..ir. D. Rijlaarsdam (Additive Industries)
 - Ir. F.B. Sperling (Nobleo)
 - Ir. M. Vervoordeldonk (ASML)
 - Dr.ir. G. Witvoet (TNO)
 - Dr.ir. A.M. Rankers (Mechatronics Academy)

Program

Day	Timing	Торіс	Trainers
1	Morning	Introduction / Who is who / Program / GoalsBasic Modelling	Steinbuch Rankers
	Afternoon	Time domain tuning - theory & hands-on practice	Nuij
2	Morning	Frequency domain	Vervoordeldonk
	Afternoon	Stability	Van der Weiden a.o.
3	Morning	Frequency response measurements – theory & hands-on practice	Oomen / Bolder
	Afternoon	Mechatronics	Sperling
4	Morning	• Filters	Witvoet
	Afternoon	Loopshaping game	Van der Weiden / v.d. Maas / Gommans
5	Morning	Design for performance	v.d. Wal
	Afternoon	Special Topics	Steinbuch / Oomen /

Day 1 (morning): Intro / Basic Modelling

r = reference speedu =throttle angle, degrees v = actual speed, mphw = road grade, %

Controller

- Introduction / Goals
- Modelling of motion systems ۲

Day 1 (afternoon): Time domain tuning

- Tuning in time domain
- Theory & Hands-on
- Matlab/Simulink + exp. setup

Day 2 (morning): Frequency domain

- Frequency domain
 - Transfer function
 - Frequency response function
- Physical interpretation

	PD controller	Mass spring system	Mass
1. equation of motion	$F_s(t) = k_p e(t) + k_v \dot{e}(t)$	$m\ddot{x} + d\dot{x} + kx = F$	$m\ddot{x} = F$
2. replace 'd/dt' by 's'	$F_s(s) = k_p e(s) + k_v s e(s)$	$ms^2x + dsx + kx = F$	$ms^2x = F$
	$\frac{F_s}{e}(s) = k_p + k_v s$	$\frac{x}{F}(s) = \frac{1}{ms^2 + ds + k}$	$\frac{x}{F} = \frac{1}{ms^2}$
3. replace 's' by 'jω'	$F_s = k_p e + k_v j \omega e$	$m(j\omega)^2 x + dj\omega x + kx = F$	$-m\omega^2 x = F$
FRF	$\frac{F_s}{e}(\omega) = k_p + k_v j\omega$	$\frac{x}{F}(\omega) = \frac{1}{-m\omega^2 + dj\omega + k}$	$\frac{x}{F} = \frac{-1}{m\omega^2}$

Day 2 (afternoon): Stability

- Introduction
- Intro stability in the time domain
- Intro stability in the frequency do
- Nyquist stability criterion
- Stability margins
- Modulus margin

mechatronics

brainport

Day 3 (morning): FRF measurements

- Linear systems
- Non-parametric identification
 - Open loop
 - Closed loop (direct/indirect)
- Enhancing estimation quality
- Autopower/Crosspower
- Coherence

mechatronics

brainport

Day 3 (afternoon): Mechatronics

- Conceptual dynamics & servo control
- Modelbuilding
- Servo control basics
- Key specifications for 0.2 µm lithography
- Case: stepper concepts

Day 4 (morning): Filters

PID

brainport

- Lead/Lag
- General second order
- Second order notch
- Low pass filter ۲
- Phase turning filter ۵

Tuning Exercise with SHAPE-IT ! ۲

Day 4 (afternoon): Tuning Game

GO for the highest bandwidth. Winning team gets bottle of wine !

Day 5 (morning): Design for performance

Feedback is:

|S| 0dB

The benefit of feedback

- Advantageous when |S| < 1

|S| > 1

ω

- Disadavantageous when

- Waterbed effect
- Bandwidth definitions
- High-gain feedback
- Requirements + disturbance + system => best controller

Day 5 (afternoon): Special Topics

- Feedback vs. Feedforward
- Learning Feedforward + Demo
- Non-linear identification

 $= Sr - GS(f_i + Le_i)$

 $= (1 - GSL)e_i$

Does the iterative scheme converge?

Via the website of our partner High Tech Institute

